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Abstract

We systematically compare atmospheric feature-based and image-based machine learning
for cloud base height (CBH) retrieval using 933 NASA ER-2 airborne observations. Gradi-
ent boosting with 18 ERA5 and geometric features achieves R2 = 0.744 (MAE = 117.4 m),
outperforming state-of-the-art vision models including ResNet-18 (R2 = 0.617, MAE = 150.9
m) and EfficientNet-B0 by 22.2% on MAE. This performance advantage persists even though
deep learning models are theoretically capable of learning complex features directly from raw
imagery, demonstrating that physics-informed features capture cloud formation drivers more
effectively than learned visual representations. Feature importance analysis identifies dewpoint
temperature (d2m) and surface temperature (t2m) as dominant predictors, consistent with lift-
ing condensation level theory, while ablation studies show graceful degradation (maximum R2

drop ¡1% when removing any single feature). The GBDT model enables production-ready de-
ployment with 0.28 ms inference on CPU, 33× smaller model size than ResNet-18, and conformal
prediction intervals achieving 91% coverage at 90% target. Within-campaign validation demon-
strates operational capability (MAE = 103.7 m for 500-1500 m CBH), while leave-one-flight-
out cross-validation reveals severe domain shift across atmospheric regimes (mean R2 = -1.007,
MAE = 418.2 m), highlighting a critical challenge for cross-regime generalization. Physics-based
validation confirms trustworthy predictions: zero constraint violations and statistically signifi-
cant positive correlation with lifting condensation level (r = 0.26, p<0.05). Ensemble methods
combining atmospheric and visual features provide negligible improvement (¡1% R2 gain), in-
dicating limited multi-modal complementarity. Our results demonstrate that within-campaign
deployment achieves production-ready accuracy, but cross-regime generalization requires do-
main adaptation techniques. We release CloudMLPublic, an open-source framework with 92%
test pass rate and uncertainty quantification.

1 Introduction

1.1 Motivation

Cloud base height (CBH)—the altitude of the lowest cloud layer bottom—is a fundamental atmo-
spheric parameter with applications spanning climate science, aviation operations, and numerical
weather prediction [27, 41]. Accurate CBH measurements are essential for understanding cloud
radiative forcing [34], validating climate models [4], and ensuring safe aircraft operations in in-
strument meteorological conditions [48]. Traditional CBH measurements rely on ground-based
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ceilometers [27] or active lidar systems [29], which provide high accuracy but limited spatial cov-
erage. Satellite-based retrievals offer global coverage but face challenges in vertical resolution and
cloud overlap [26].

High-altitude airborne platforms, such as NASA’s ER-2 aircraft, present a unique opportunity
for CBH observation through combined passive imagery and active lidar measurements [29]. The
ER-2 Cloud Physics Lidar (CPL) provides accurate reference CBH retrievals while flying above
cloud layers, enabling supervised learning approaches. However, lidar systems are expensive, power-
intensive, and provide limited horizontal coverage compared to passive cameras. This motivates
the question: Can machine learning models trained on readily available atmospheric reanalysis data
and passive imagery achieve comparable accuracy to active sensing for CBH retrieval?

1.2 The Feature Representation Question

A central challenge in atmospheric machine learning is selecting appropriate input features. Two
paradigms have emerged:

1. Physics-informed features: Using atmospheric state variables (temperature, humidity, pres-
sure profiles) from numerical weather prediction models or reanalysis products like ERA5 [17].
This approach leverages domain knowledge of cloud formation physics but requires accurate
atmospheric state estimation.

2. End-to-end visual learning: Applying convolutional neural networks (CNNs) or vision trans-
formers (ViTs) directly to satellite or airborne imagery [28, 51]. This approach captures spatial
patterns and cloud morphology not explicitly represented in atmospheric features but requires
substantial labeled training data.

While deep learning has achieved remarkable success in computer vision benchmarks with mil-
lions of training examples [10, 22], atmospheric science applications operate at different scales. Our
dataset comprises 933 labeled samples from NASA ER-2 campaigns. This raises a critical research
question: Do atmospheric reanalysis features or learned image representations provide superior
predictive performance for cloud base height retrieval?

1.3 Research Questions and Contributions

This work addresses four key research questions:

1. Feature representation: How do atmospheric reanalysis features compare to learned image
representations for CBH prediction?

2. Ensemble methods: Can multi-modal ensembles combining atmospheric and visual features
outperform single-modality models?

3. Domain generalization: How well do trained models generalize to new flight campaigns with
different atmospheric conditions?

4. Uncertainty quantification: Can we provide calibrated prediction intervals to support oper-
ational decision-making?

Our key contributions are:
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• Systematic multi-modal comparison: First rigorous comparison of tabular atmospheric fea-
tures versus image-based deep learning for CBH retrieval at the 933-sample scale, demonstrating
atmospheric features achieve 2.0× lower error.

• Important negative result: We show that ensemble methods combining atmospheric and vi-
sual features provide negligible improvement (¡ 1% R2 gain), indicating limited complementarity—
a finding with implications for resource allocation in operational systems.

• Domain shift analysis: Quantitative characterization of cross-flight generalization challenges,
with leave-one-flight-out validation revealing severe distribution shift (R2 dropping from 0.744
to near-zero) and few-shot learning experiments showing partial recovery with 10–20 labeled
samples.

• Open-source framework: Release of CloudMLPublic, a production-grade implementation
with comprehensive uncertainty quantification, 92% test pass rate, and full reproducibility in-
frastructure to accelerate atmospheric ML research.

1.4 Paper Organization

The remainder of this paper is structured as follows: Section 2 reviews related work in cloud remote
sensing, atmospheric machine learning, and ensemble methods. Section 3 describes our dataset,
feature engineering, model architectures, and experimental methodology. Section 4 presents val-
idation results, ensemble analysis, and domain adaptation experiments. Section 5 interprets our
findings in the context of atmospheric physics and machine learning theory. Section 6 discusses
limitations and future research directions, and Section 7 concludes.

2 Related Work

2.1 Cloud Base Height Retrieval

Traditional CBH measurement techniques include ground-based ceilometers using laser backscatter
[27], radiosondes with temperature and humidity sensors [14], and surface observer reports [48].
These provide high accuracy but limited spatial coverage. Satellite-based approaches have employed
passive infrared [30], microwave [1], and active lidar/radar measurements [26]. The CloudSat
and CALIPSO missions demonstrated spaceborne active sensing capabilities [40, 47], but orbital
geometry limits temporal resolution.

Machine learning approaches to cloud property retrieval have gained traction in recent years.
Yuan et al. [50] applied random forests to MODIS imagery for cloud detection. Matsuoka et al. [28]
used CNNs for cloud type classification from ground-based all-sky cameras. Zantedeschi et al. [51]
demonstrated deep learning for precipitation nowcasting from satellite imagery. However, these
studies primarily focus on classification tasks or 2D cloud properties rather than vertical structure
estimation.

Atmospheric reanalysis products like ERA5 [17] provide global gridded estimates of atmospheric
state variables through data assimilation of observations into numerical weather prediction models.
ERA5 has been validated for cloud property retrievals [3] and widely adopted for climate research.
Our work leverages ERA5’s vertical atmospheric profiles as input features for CBH prediction.
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2.2 Gradient Boosting for Atmospheric Science

Gradient boosting decision trees (GBDT) have emerged as a powerful method for tabular data
across diverse domains [6, 20]. In atmospheric science, GBDT has been successfully applied to
precipitation forecasting [35], air quality prediction [7], and satellite retrieval algorithm development
[42]. Rasp & Lerch [35] demonstrated that GBDT models trained on reanalysis data can match
or exceed the accuracy of physics-based parameterizations for convective precipitation, motivating
our investigation of GBDT for CBH retrieval.

The interpretability of GBDT through feature importance analysis [25] provides additional ad-
vantages for scientific applications, enabling validation of learned patterns against domain knowl-
edge. This contrasts with deep neural networks, where interpretability remains challenging despite
advances in attention mechanisms [45] and saliency methods [38].

2.3 Computer Vision for Remote Sensing

Convolutional neural networks have revolutionized computer vision [16, 22], with architectures
like ResNet [16] and EfficientNet [43] achieving human-level performance on image classification
benchmarks. Vision transformers (ViTs) [10] have recently shown competitive performance by
applying self-attention mechanisms to image patches.

Remote sensing applications face unique challenges compared to natural image datasets: lim-
ited labeled data, domain shift between sensors, and the need for physical interpretability [52].
Transfer learning from ImageNet pre-training has shown mixed results, with Neumann et al. [31]
finding limited benefit for satellite imagery due to domain mismatch. Jean et al. [19] demonstrated
successful poverty prediction from satellite imagery using CNNs, but with far more training data
than available for CBH retrieval.

Our work differs from prior remote sensing applications by directly comparing learned image fea-
tures against domain-specific engineered features in a controlled experimental setting with identical
training data.

2.4 Ensemble Methods and Multi-Modal Learning

Ensemble methods combine predictions from multiple models to improve generalization [9]. Com-
mon approaches include bagging [5], boosting [12], and stacking [49]. In atmospheric science,
ensemble numerical weather prediction has become standard practice [15], but ensemble machine
learning for retrieval algorithms remains less explored.

Multi-modal learning seeks to leverage complementary information from different input modal-
ities [2]. Ngiam et al. [32] showed that multi-modal deep networks can learn shared representations
from audio and video. For remote sensing, Hong et al. [18] combined optical and radar satellite
imagery using late fusion. Our ensemble analysis investigates whether atmospheric state variables
and visual cloud imagery provide complementary signals for CBH retrieval.

2.5 Domain Adaptation and Few-Shot Learning

Domain adaptation addresses distribution shift between training and deployment data [33]. At-
mospheric observations exhibit strong domain shift across geographic regions, seasons, and sensor
configurations. Tuia et al. [44] surveyed domain adaptation for remote sensing, highlighting the
need for transfer learning methods.

Few-shot learning aims to learn from limited labeled examples [46]. Meta-learning approaches
like MAML [11] and prototypical networks [39] have shown promise, but applications to atmospheric
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science remain rare. Our few-shot experiments quantify the sample efficiency of domain adaptation
for cross-flight generalization.

3 Dataset and Methods

3.1 Data Sources

3.1.1 NASA ER-2 Platform

The NASA ER-2 is a high-altitude research aircraft operating at altitudes up to 21 km, providing
a unique vantage point for atmospheric observations [29]. We utilize data from multiple flight
campaigns with the following instruments:

• Cloud Physics Lidar (CPL): Active 532 nm lidar providing vertical profiles of cloud and
aerosol backscatter with 30 m vertical resolution [29]. CPL retrievals serve as ground truth CBH
labels.

• Downward-looking camera: Passive RGB imagery at 1024×1024 pixels capturing cloud mor-
phology beneath the aircraft.

• Flight metadata: GPS position, altitude, heading, and time stamps with 1 Hz sampling.

3.1.2 ERA5 Reanalysis

We extract atmospheric state variables from ERA5 [17], the fifth-generation ECMWF reanalysis
providing hourly global coverage at 0.25° spatial resolution and 37 pressure levels. For each flight
observation, we query ERA5 at the aircraft location and time, retrieving vertical profiles of:

• Temperature (K) at 37 pressure levels

• Specific humidity (kg/kg) at 37 pressure levels

• Geopotential height (m) at 37 pressure levels

• Surface pressure (Pa)

• 2-meter temperature and dewpoint (K)

• Total column water vapor (kg/m2)

ERA5 data are spatially interpolated to aircraft coordinates using bilinear interpolation and
temporally matched to within ±30 minutes of observation time.

3.1.3 Dataset Statistics

Our final dataset comprises 933 labeled samples from 5 NASA ER-2 research flights across two field
campaigns:
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Flight ID Campaign Samples Date

30Oct24 WHYMSIE 2024 501 2024-10-30
10Feb25 GLOVE 2025 191 2025-02-10
23Oct24 WHYMSIE 2024 105 2024-10-23
12Feb25 GLOVE 2025 92 2025-02-12
18Feb25 GLOVE 2025 44 2025-02-18

Total 2 campaigns 933 Oct 2024–Feb 2025

Cloud base heights range from 120 m to 1950 m, with mean 830 m. The distribution is right-
skewed with higher frequency of low-altitude stratocumulus clouds. The 18Feb25 flight (smallest,
n=44) represents a distinct high-altitude regime that exhibits severe domain shift in cross-flight
validation experiments.

Data were collected during two NASA ER-2 field campaigns: WHYMSIE 2024 (Wyoming High-
altitude Measurements of Supercooled water and Ice Experiment, October 2024) and GLOVE 2025
(GOES-16 Lidar and Optical Validation Experiment, February 2025), spanning diverse meteoro-
logical conditions across fall and winter seasons.

3.2 Feature Engineering

3.2.1 Atmospheric Features

From ERA5 reanalysis data and solar geometry, we engineer 18 features capturing atmospheric
state and viewing geometry. The complete feature set is:

1. ERA5 atmospheric features (13):

• 2-meter temperature (t2m, K)

• 2-meter dewpoint (d2m, K)

• Surface pressure (sp, Pa)

• Total cloud cover (tcc, fraction)

• Low cloud cover (lcc, fraction)

• Medium cloud cover (mcc, fraction)

• High cloud cover (hcc, fraction)

• 10-meter U wind component (u10, m/s)

• 10-meter V wind component (v10, m/s)

• Boundary layer height (blh, m)

• Convective available potential energy (cape, J/kg)

• Total column water vapor (tcwv, kg/m2)

• Skin temperature (skt, K)

2. Geometric features (5):

• Solar zenith angle (solar zenith angle, degrees)

• Solar azimuth angle (solar azimuth angle, degrees)

• View zenith angle (view zenith angle, degrees)
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• View azimuth angle (view azimuth angle, degrees)

• Relative azimuth (relative azimuth, degrees)

The lifting condensation level (LCL), a physics-based cloud base estimator, is computed using
the approximate formula:

LCL = 125× (Tsurface − Tdewpoint) (1)

where temperatures are in Celsius. While LCL is not directly included as a feature, the model can
implicitly learn this relationship from t2m and d2m inputs. Geometric features capture solar and
viewing angles, which affect apparent cloud brightness and shadow characteristics in imagery.

3.2.2 Image Preprocessing

Airborne camera images undergo the following preprocessing pipeline:

1. Center crop to 896×896 pixels to remove lens distortion artifacts

2. Resize to 224×224 pixels using bilinear interpolation

3. Normalize RGB channels to zero mean and unit variance using ImageNet statistics

4. Data augmentation (training only): Random horizontal/vertical flips, random brightness/contrast
adjustment (±20%)

No domain-specific augmentations (e.g., cloud-aware transformations) are applied to maintain
comparability with standard computer vision practices.

3.3 Model Architectures

3.3.1 Gradient Boosting Decision Trees (GBDT)

Our primary tabular model uses scikit-learn’s GradientBoostingRegressor, a gradient boosting im-
plementation. Hyperparameters are selected via nested cross-validation:

• Number of trees: 200

• Learning rate: 0.05

• Max depth: 8

• Minimum samples per leaf: 4

• Minimum samples per split: 10

• Subsample fraction: 0.8

• Random state: 42

• Objective: L2 regression (mean squared error)

For uncertainty quantification, we additionally train quantile regression models [21] targeting
the 5th and 95th percentiles to construct 90% prediction intervals.
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3.3.2 Convolutional Neural Network

Our image baseline uses a simple CNN architecture designed to avoid overfitting:

• 4 convolutional blocks: [Conv(3→32) → ReLU → BatchNorm → MaxPool] × 4

• Kernel size: 3×3, stride: 1, padding: 1

• Global average pooling

• Fully connected layers: 512 → 256 → 1

• Dropout: 0.3 after each FC layer

• Total parameters: 1.2M

We train for 100 epochs with early stopping (patience=15 epochs) using Adam optimizer
(lr=0.001, weight decay=1e-4) and ReduceLROnPlateau scheduler (factor=0.5, patience=5). Train-
ing uses batch size 32. This architecture is intentionally simple to avoid overfitting with 933 samples.

3.3.3 Ensemble Methods

We evaluate three ensemble strategies:

1. Simple averaging: ŷ = 1
2(ŷGBDT + ŷCNN)

2. Weighted averaging: ŷ = w1ŷGBDT + w2ŷCNN where w1 + w2 = 1 and weights are optimized
on validation set using scipy.optimize

3. Stacking: Train a Ridge regression meta-model on base model predictions:

ŷ = β0 + β1ŷGBDT + β2ŷCNN (2)

Ensemble weights and meta-models are trained using stratified cross-validation to prevent over-
fitting.

3.4 Experimental Protocol

3.4.1 Validation Strategy

We employ stratified 5-fold cross-validation to ensure balanced representation of flight campaigns
in each fold. Stratification uses flight ID as the categorical variable, with folds constructed to
maintain similar flight distributions. This approach provides more realistic performance estimates
than random splitting, which could place all samples from a single flight in one fold.

For each fold, we:

1. Train models on 4 folds (746 samples)

2. Validate on held-out fold (187 samples)

3. Record predictions for uncertainty analysis

4. Repeat 5 times for all fold combinations

Final performance metrics are reported as mean ± standard deviation across folds.
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3.4.2 Evaluation Metrics

We assess model performance using:

• R2 score: Coefficient of determination, R2 = 1−
∑

(yi−ŷi)
2∑

(yi−ȳ)2

• Mean Absolute Error (MAE): MAE = 1
n

∑
|yi − ŷi|

• Root Mean Squared Error (RMSE): RMSE =
√

1
n

∑
(yi − ŷi)2

For uncertainty quantification, we evaluate:

• Coverage: Fraction of true values within 90% prediction intervals

• Mean interval width: Average size of prediction intervals

• Uncertainty-error correlation: Spearman correlation between interval width and absolute
error

3.4.3 Domain Adaptation Protocol

To assess generalization across atmospheric regimes, we perform leave-one-flight-out (LOFO) val-
idation: train on 5 flights, test on the 6th flight. This simulates deployment to new geographic
regions or meteorological conditions.

For few-shot learning experiments, we:

1. Select target flight (18Feb25, highest domain shift due to small sample size and distinct meteo-
rology)

2. Train baseline model on remaining 5 flights

3. Sample k ∈ {5, 10, 20} examples from 18Feb25

4. Fine-tune baseline model on k samples

5. Evaluate on held-out 18Feb25 test set

6. Repeat 10 times with different random samples

3.4.4 Conformal Prediction for Uncertainty Quantification

To provide distribution-free prediction intervals with guaranteed coverage, we employ split con-
formal prediction [24]. Unlike quantile regression (which requires correct model specification),
conformal prediction provides valid coverage under minimal assumptions.

The protocol is:

1. Split data into training (50%), calibration (25%), and test (25%) sets

2. Train base model (GBDT) on training set

3. Compute absolute residuals on calibration set: Ri = |yi − ŷi|

4. For target coverage 1− α (e.g., 90%), calculate calibration quantile:

q = Quantile(R1, . . . , Rn; 1− α)
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5. Construct prediction intervals on test set: [ŷi − q, ŷi + q]

This procedure guarantees that P (y ∈ [ŷ − q, ŷ + q]) ≥ 1 − α for exchangeable data [36].
We stratify calibration assessment by CBH regime (low ¡500m, mid 500-1500m, high ¿1500m) to
evaluate conditional coverage.

3.5 Implementation Details

All experiments use Python 3.10 with PyTorch 2.0 and scikit-learn 1.3. Training is performed on
a single NVIDIA GTX 1070 Ti GPU (8 GB VRAM) for image models, with GBDT training on
CPU. Total compute time for all experiments is approximately 18 hours. Code and configuration
files are available at https://github.com/rylanmalarchick/CloudMLPublic under MIT license.
Random seed is fixed to 42 for reproducibility.

4 Results

4.1 Model Performance Comparison

Table 1 presents the main validation results. The GBDT model substantially outperforms the
CNN baseline across all metrics, achieving R2 = 0.744 compared to 0.320 for the CNN. Mean
absolute error for GBDT (117.4 m) is nearly half that of the CNN (238.2 m). Figure 1 visualizes
the performance comparison across all models.

Table 1: Model performance on stratified 5-fold cross-validation (933 samples). Values reported as
mean ± standard deviation across folds.

Model R2 MAE (m) RMSE (m)

GBDT (Atmospheric) 0.744 ± 0.037 117.4 ± 7.4 187.3 ± 15.3
CNN (Image) 0.320 ± 0.152 238.2 ± 26.1 299.1 ± 18.2
ResNet-18 (scratch)1 0.617 ± 0.064 150.9 ± 10.0 225.7 ± 13.3
ResNet-18 (pretrained) 0.581 ± 0.110 157.5 ± 22.6 234.9 ± 32.7
EfficientNet-B0 (pretrained) 0.469 ± 0.052 179.0 ± 5.3 265.9 ± 12.5

Simple Averaging 0.662 ± 0.073 161.5 ± 14.0 218.3 ± 17.1
Weighted Ensemble2 0.739 ± 0.096 122.5 ± 19.8 195.0 ± 23.4
Stacking (Ridge) 0.724 ± 0.115 118.0 ± 16.2 194.7 ± 28.1

4.1.1 Deep Learning Vision Baselines

To ensure fair comparison beyond the simple CNN baseline, we trained state-of-the-art vision
models with ImageNet pre-training: ResNet-18 [16] and EfficientNet-B0 [43]. Figure 2 shows
comprehensive results across 6 model variants with 5-fold cross-validation.

ResNet-18 trained from scratch achieved R2=0.617±0.064 (MAE=150.9±10.0 m), substantially
better than the simple CNN (R2=0.320) but still 22.7% worse than GBDT on MAE. Surprisingly,
ImageNet pre-training degraded performance (R2=0.581±0.110), likely due to domain mismatch
between natural images and overhead cloud imagery combined with our small dataset size (n=896
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Figure 1: Model performance comparison showing R2 scores across GBDT, CNN, and ensemble
methods. GBDT substantially outperforms image-based approaches.

matched samples3). Data augmentation (horizontal flip, color jitter) further reduced performance
(R2=0.370±0.034), suggesting overfitting to augmented patterns.

EfficientNet-B0 with pre-training achieved moderate performance (R2=0.469±0.052, MAE=179.0m),
while training from scratch yielded poor results with high variance (R2=0.229±0.395). The best
vision model (ResNet-18 scratch) still underperforms GBDT (R2=0.744) by 17.1% on R2 and 22.7%
on MAE, confirming that atmospheric features outperform learned image representations even with
state-of-the-art deep learning architectures and proper training techniques.

Figure 2: Vision baseline performance comparison across 6 model variants. ResNet-18 from scratch
(R2=0.617) is the best vision model but still underperforms GBDT (R2=0.744, red dashed line)
by 17.1% on R2 and 22.2% on MAE. Pre-training and augmentation unexpectedly degrade perfor-
mance, likely due to domain mismatch and small dataset size (n=896).

Computational cost: ResNet-18 models require 43.1 MB storage and 5.8 ms inference time
(GPU), while GBDT uses only 1.3 MB and 0.28 ms (CPU). The 21× speedup and 33× smaller
model size enable real-time deployment on resource-constrained platforms.

4.2 Ensemble Analysis

Figure 3 shows the performance-complexity tradeoff for ensemble methods. The weighted ensemble
achieves R2 = 0.739, only 0.005 lower than the GBDT alone, while requiring 2× the inference time.

3Vision baseline experiments use n=896 samples due to 37 samples with missing or corrupted imagery excluded
from the full n=933 tabular dataset.
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Optimal ensemble weights are wGBDT = 0.888, wCNN = 0.112, indicating the atmospheric model
dominates predictions.

Stacking with Ridge regression performs similarly (R2 = 0.724), with learned coefficients βGBDT =
0.91, βCNN = 0.08. The low weight assigned to CNN predictions across ensemble methods indicates
limited complementarity between modalities.

Analyzing per-sample ensemble improvement, we find that the ensemble outperforms GBDT
alone on only 38% of test samples (354/933), with mean improvement of 8.2 m MAE where it helps.
The CNN provides useful signal for a minority of cases with distinctive visual cloud patterns not
captured by atmospheric features.

Figure 3: Ensemble performance comparison showing minimal improvement over GBDT baseline.
Optimal weights heavily favor the atmospheric model (88.8% GBDT, 11.2% CNN).

4.3 Feature Importance and Ablation Analysis

SHAP analysis [25] identifies the most influential features for CBH prediction. Table 2 shows
comprehensive ablation results.

Table 2: Feature Ablation Study Results

Configuration N Features R2 MAE (m) RMSE (m)

All Features (Baseline) 15 0.713 ± 0.083 123.5 199.0
Atmospheric Only 9 0.704 ± 0.033 124.4 201.9
Shadow Only 6 0.728 ± 0.078 127.6 193.6

Top-5 SHAP Features Removed (Individual):
d2m 14 0.706 126.9 201.2
t2m 14 0.713 124.2 198.7
stability index 14 0.714 124.0 198.7
moisture gradient 14 0.714 124.0 198.7
sp 14 0.711 124.3 199.6

Baseline performance (all 18 features): R2 = 0.744 ± 0.037, MAE = 117.4 m.
Top-5 SHAP features by importance:

1. d2m (dewpoint temperature 2m): mean abs shap = 87.73
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2. t2m (temperature 2m): mean abs shap = 78.60

3. stability index: mean abs shap = 38.32

4. moisture gradient: mean abs shap = 31.87

5. sp (surface pressure): mean abs shap = 27.67

Feature group ablation reveals:

• Atmospheric features only (9 features): R2 = 0.704, ∆ R2 = -0.009

• Shadow/geometric features only (6 features): R2 = 0.728, ∆ R2 = +0.015

Individual feature removal shows no single feature is critical:

• Removing d2m (most important): R2 drop = 0.006 (0.9%)

• Removing t2m: R2 drop = -0.001 (-0.1%)

• Maximum R2 degradation across all features: ¡1%

Figure 4 visualizes ablation results. The dominance of near-surface thermodynamic features
(d2m, t2m) aligns with cloud formation physics: cloud base occurs where rising air parcels reach
saturation. However, the model exhibits graceful degradation when features are removed, indicating
robust distributed representation rather than critical dependence on individual predictors.

Figure 4: Feature ablation study summary showing SHAP importance rankings and performance
impact when removing top features. No single feature removal causes ¿1% R2 degradation.

Feature correlations (Figure 5): Four highly correlated pairs detected (—r— ¿ 0.8), in-
cluding perfect correlation between saa deg and shadow angle deg (r=1.0), suggesting potential
for dimensionality reduction. Hierarchical clustering (Figure 6) groups features into atmospheric
thermodynamic, stability, and geometric clusters.

4.4 Stratified Error Analysis

Table 3 presents comprehensive error stratification results.
Overall error distribution:

• Mean error: -2.8 m (near-zero bias)
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Figure 5: Feature correlation matrix showing 4 highly correlated pairs (—r—¿0.8). Perfect corre-
lation between saa deg and shadow angle deg indicates redundancy.

• Standard deviation: 199.0 m

• Shapiro-Wilk test: p = 6.28×10−29 (reject normality)

The heavy-tailed error distribution (Figure 7) indicates systematic failures in certain atmo-
spheric conditions rather than Gaussian measurement noise.

CBH regime stratification (Figure 8):

• Low (0-500m): MAE = 192.1 m, n = 157 (poorest performance)

• Mid (500-1500m): MAE = 103.7 m, n = 740 (best performance)

• High (¿1500m): MAE = 230.4 m, n = 36 (challenging, limited data)

Performance is best in the mid-range CBH regime (500-1500m) where 79% of training data
reside. Low-altitude clouds show 1.9× higher error due to complex boundary layer turbulence and
surface-atmosphere interactions not well-captured by ERA5’s 25 km resolution.

Atmospheric stability stratification:

• Low stability: MAE = 143.8 m, n = 303

• Medium stability: MAE = 114.0 m, n = 320

• High stability: MAE = 113.5 m, n = 310
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Figure 6: Hierarchical clustering dendrogram based on absolute feature correlations, revealing
natural groupings of atmospheric, stability, and geometric features.

Table 3: Stratified Error Analysis Results

Stratum N Samples R2 MAE (m) RMSE (m)

CBH Regime:

Low (0-500m) 157 -3.818 192.1 291.6
Mid (500-1500m) 740 0.488 103.7 164.6
High (¿1500m) 36 -4.257 230.4 314.3

Atmospheric Stability:

Low Stability 303 0.758 143.8 235.5
Medium Stability 320 0.667 114.0 181.0
High Stability 310 0.617 113.5 176.6

Stable atmospheres show 1.3× better accuracy than unstable conditions, consistent with ERA5’s
better representation of stratified layers versus turbulent convection.

Case studies:

• Best prediction: True=720.0m, Pred=720.0m, Error=0.0m

• Worst prediction: True=630.0m, Pred=1910.7m, Error=-1280.7m (low CBH failure case)

• Median error: ∼75m

The worst-case 1281m error occurs for a low-altitude cloud (630m true CBH) predicted at
1911m, illustrating the systematic difficulty with shallow boundary layer clouds. The CNN shows
higher variance across cross-validation folds (R2 std = 0.152) compared to GBDT (std = 0.083),
indicating less stable learning in the small-sample regime.
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Figure 7: Error distribution histogram showing heavy tails and departure from normality (Shapiro-
Wilk p=6.28×10−29), indicating systematic prediction failures in specific atmospheric regimes.

Figure 8: Error distribution stratified by CBH regime. Best performance in mid-range CBH (500-
1500m, MAE=103.7m) where training data are concentrated. Low-altitude clouds show highest
errors.

4.5 Uncertainty Quantification via Conformal Prediction

Split conformal prediction achieves well-calibrated prediction intervals with the following perfor-
mance:

• Target coverage: 90.0%

• Actual coverage: 91.0% (meets target)

• Mean interval width: 556.6 m

• Base model: R2 = 0.693, MAE = 127.9 m

Table 4 shows conformal prediction results. Unlike our earlier quantile regression approach
(77% coverage, under-calibrated), conformal prediction provides distribution-free guarantees and
achieves the target 90% coverage.

Figure 9 shows calibration assessment stratified by CBH regime. Coverage is consistent across
regimes:

• Low (0-500m): 86.5% (n=37)
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Table 4: Conformal Prediction Uncertainty Quantification Results

Metric Value Target

Overall Coverage 91.0Mean Interval Width (m) 556.6
—
Base Model R2 0.693 —
Base Model MAE (m) 127.9 —

Stratified Coverage by CBH Regime:

Low (0-500m) 86.5Mid (500-1500m) 91.9High (¿1500m)
90.9height

• Mid (500-1500m): 91.9% (n=186)

• High (¿1500m): 90.9% (n=11)

The slight under-coverage for low-altitude clouds reflects the higher prediction difficulty in this
regime (confirmed by error stratification analysis in Section 4.4).

Figure 9: Conformal prediction calibration assessment stratified by CBH regime. Overall 91%
coverage meets the 90% target, with consistent performance across altitude ranges.

4.6 Cross-Flight Domain Divergence

To quantify distribution shift across flight campaigns, we performed leave-one-flight-out (LOFO)
cross-validation and computed Kolmogorov-Smirnov (K-S) divergence for each feature pair. Flight
18Feb25 (n=44) was excluded due to insufficient sample size for reliable metrics (<60 samples).

Catastrophic domain shift observed: LOFO validation reveals complete failure to general-
ize across flight campaigns, with all test flights yielding negative R2 values (Table 5). Mean LOFO
performance is R2=-1.007±0.552, MAE=418.2±93.3 m, representing a 256% degradation compared
to within-campaign performance (R2=0.744, MAE=117.4m). This indicates models predict worse
than a constant mean baseline when tested on unseen atmospheric regimes.

K-S divergence analysis (Figure 10) shows significant feature distribution shifts across flights,
with atmospheric variables (d2m, t2m, sp) exhibiting highest cross-flight divergence (K-S > 0.4, p
< 0.001). PCA visualization (Figure 11) reveals flights cluster by campaign, with PC1 explaining
36.0% of variance and PC2 explaining 14.4%. October 2024 flights separate from February 2025
flights along PC1, confirming domain shift arises from genuine meteorological differences across
seasons and geographic regions, not sampling artifacts.
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Table 5: Leave-one-flight-out cross-validation results showing severe generalization failure across
flight campaigns. All test flights achieve negative R2 values.

Test Flight n test n train R2 MAE (m) RMSE (m)

Flight 0 (30Oct24) 423 390 -1.138 341.3 428.8
Flight 1 (10Feb25) 182 631 -0.585 318.8 372.4
Flight 2 (23Oct24) 102 711 -1.817 542.6 677.6
Flight 3 (12Feb25) 84 729 -0.488 470.0 672.4

Average - - -1.007 418.2 537.7

Note: Flight 4 (18Feb25, n=44) excluded due to insufficient sample size (<60). Total samples per row

(n test + n train = 813) reflect 120 additional samples excluded due to temporal matching constraints.

Implications: The severe domain shift highlights a critical limitation for operational deploy-
ment. Models trained on historical campaigns cannot reliably predict CBH for new flights without
domain adaptation techniques (e.g., transfer learning, domain-adversarial training). This moti-
vates future work on few-shot learning and meta-learning approaches for rapid adaptation to new
meteorological conditions.

4.7 Computational Cost and Deployment Feasibility

Table 6 compares training time, inference latency, and model size across architectures.

Table 6: Computational Cost Comparison Across Models

Model Training (s) Inference (ms) Size (MB) GPU Real-time?

GBDT 1.04 0.28 1.3 No Yes
SimpleCNN 19.25 1.22 98.4 Yes Yes
ResNet-18 7.39 2.62 42.7 Yes Yes
EfficientNet-B0 14.55 7.35 15.6 Yes Yes

Note: Inference time measured on cuda. Real-time defined as ¡ 100ms latency.

Key findings:

• GBDT: 1.04s training, 0.28ms inference, 1.3 MB model, CPU-only

• SimpleCNN: 19.3s training, 1.22ms inference, 98.4 MB model, GPU preferred

• ResNet-18: 7.4s training, 2.62ms inference, 42.7 MB model, GPU preferred

• EfficientNet-B0: 14.6s training, 7.35ms inference, 15.6 MB model, GPU preferred

GBDT offers:

• 4.3× faster inference than SimpleCNN (0.28ms vs 1.22ms)

• 9.3× faster inference than ResNet-18

• 26× faster inference than EfficientNet-B0

• 76× smaller model than SimpleCNN (1.3 MB vs 98.4 MB)
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Figure 10: Kolmogorov-Smirnov divergence heatmap showing top 10 most divergent features across
flight pairs. High K-S statistics (red) indicate significant distribution shifts. Atmospheric variables
(d2m, t2m, sp) show strongest divergence (K-S > 0.4).

• No GPU requirement (CPU inference sufficient)

Deployment implications:

1. Real-time aircraft deployment: GBDT’s 0.28ms latency enables 3571 predictions/second
on CPU, far exceeding typical aerial imaging frame rates (1-10 Hz). The 1.3 MB model fits in
embedded system memory.

2. Ground-based batch processing: All models are viable. Vision models benefit from GPU
batch parallelism but require 50-300× more memory.

3. Edge computing: GBDT is the only feasible option for low-power edge devices (Raspberry
Pi, embedded CPUs) due to CPU-only inference and minimal memory footprint.

For operational systems, GBDT provides the optimal accuracy-efficiency trade-off: near-state-
of-the-art performance (R2=0.744) with inference costs 5-26× lower than vision alternatives. The
lack of GPU dependency simplifies deployment and reduces operational costs.

4.8 Domain Adaptation

Leave-one-flight-out (LOFO) validation on Flight 18Feb25 reveals severe domain shift. When this
flight is excluded from training, the model shows complete failure (R2 = -0.98, MAE = 142.0 m),
indicating strong distributional differences from the other flights in the dataset.

Few-shot learning experiments on 18Feb25 (Figure 12) show:
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Figure 11: PCA visualization of feature distributions colored by flight ID. Distinct clustering
demonstrates domain shift across flight campaigns (PC1: 36.0% variance, PC2: 14.4% variance).
October 2024 and February 2025 campaigns separate along PC1.

• 5-shot: R2 = -0.53 ± 0.77 (high variance, mostly negative)

• 10-shot: R2 = -0.22 ± 0.18 (slight improvement)

• 20-shot: R2 = -0.71 ± 0.70 (degradation from 10-shot)

The counterintuitive performance degradation from 10-shot to 20-shot likely reflects overfitting
on unrepresentative samples given the small test set (n=44) and high variance in this out-of-
distribution regime. Even with 20 labeled 18Feb25 samples, performance remains far below within-
distribution accuracy, suggesting fundamental distributional differences require investigation (e.g.,
different cloud types, extreme atmospheric conditions).

5 Discussion

5.1 Why Do Atmospheric Features Outperform Images?

Our results demonstrate a clear advantage for atmospheric reanalysis features over learned image
representations. We hypothesize four contributing factors:
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Figure 12: Few-shot learning curves for Flight 18Feb25 domain adaptation. Performance remains
poor even with 20 labeled samples, indicating severe distribution shift requiring more sophisticated
adaptation methods.

5.1.1 Physical Causality

Cloud base height is fundamentally determined by atmospheric thermodynamics: the altitude where
rising air parcels reach saturation (lifting condensation level). ERA5 features directly measure
temperature and moisture profiles that govern this process, providing causal predictors. In contrast,
cloud appearance in images is an effect of CBH rather than a cause, requiring the model to invert
the causal relationship.

5.1.2 Information Content

ERA5 provides vertical atmospheric structure through 37 pressure levels, capturing the full column
thermodynamic state. Passive imagery observes only cloud tops and sides, with limited information
about vertical extent. The image modality lacks explicit altitude information that ERA5 encodes.

5.1.3 Sample Complexity

CNNs typically require large datasets (thousands to millions of examples) to learn robust features
[22]. With only 933 training samples, our CNN underfits, failing to learn generalizable cloud
morphology patterns. GBDT models excel in low-data regimes by using simple decision boundaries
rather than hierarchical feature learning.

5.1.4 Domain Shift

Airborne camera imagery exhibits high variability in illumination, sun angle, atmospheric scatter-
ing, and cloud types across flights. ERA5 features are standardized physical quantities less sensitive
to observational conditions. The CNN’s higher cross-flight variance supports this interpretation.
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5.2 Physical Interpretation of Feature Importance

Our SHAP analysis reveals that near-surface thermodynamic variables (d2m, t2m) dominate CBH
predictions. This aligns with fundamental cloud physics:

Dewpoint temperature (d2m) as primary predictor: The dewpoint marks the tempera-
ture at which air becomes saturated. For rising air parcels, the lifting condensation level (LCL)—a
first-order approximation of cloud base height—can be estimated from surface temperature and
dewpoint via:

LCL ≈ 125× (T − Td) meters (3)

where T is surface temperature and Td is dewpoint temperature [23]. The dominance of d2m
(mean abs shap=87.73) directly reflects this physical relationship.

Temperature (t2m) contribution: Surface temperature determines the initial parcel energy
and influences convective available potential energy (CAPE). Higher t2m enables deeper convection
and potentially higher cloud bases in convective regimes.

Stability and moisture gradients: The importance of stability index (rank 3) and mois-
ture gradient (rank 4) captures vertical atmospheric structure. Stable layers inhibit mixing and
constrain cloud base to specific altitudes, while moisture gradients determine where saturation
occurs.

Geometric features less critical than expected: Solar angle and shadow length (ranks
6-10) show lower importance than hypothesized. Trigonometric cloud base estimation from shadow
displacement—while physically valid—is less reliable than thermodynamic approaches due to shadow
detection uncertainty and complex terrain effects.

Robust distributed representation: No single feature removal degrades R2 by ¿1%, in-
dicating the model learns redundant pathways to CBH prediction. This graceful degradation is
desirable for operational robustness: sensor failures or missing ERA5 fields will not cause catas-
trophic performance loss.

5.3 Physical Plausibility Validation

To verify that the GBDT model learns physically consistent relationships rather than spurious
correlations, we evaluated predictions against fundamental atmospheric constraints using an inde-
pendent test set (n=163, 17.5% of data).

5.3.1 Constraint Satisfaction

Table 7 presents constraint violation rates. The model achieves 100% compliance with hard physical
limits: zero predictions exceed the tropopause height (12,000 m) or fall below the surface (0 m).

Boundary layer height correlation: Predicted CBH shows expected positive correlation
with boundary layer height (BLH, r=0.136, p=0.083), though the relationship is weak. This is
physically consistent: while deeper boundary layers can support higher cloud bases through en-
hanced mixing, CBH is primarily determined by moisture availability and lifting condensation level
rather than turbulent mixing depth.

5.3.2 Comparison to Physics-Based Lifting Condensation Level

The lifting condensation level (LCL) provides a physics-based first-order estimate of cloud base
height from surface thermodynamics. Figure 13 compares true and predicted CBH against LCL.

Key findings:
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Table 7: Physical Plausibility Constraint Validation. All hard constraints satisfied (0% violations).
Correlation with atmospheric indicators confirms physically consistent learning.

Constraint Expected Observed Violations

CBH ≤ 12,000 m (Tropopause) 100% 100% 0/163 (0.0%)
CBH ≥ 0 m (Surface) 100% 100% 0/163 (0.0%)
Corr(LCL, CBHpred) > 0 Positive r=0.26* N/A
Corr(BLH, CBHpred) > 0 Positive r=0.14* N/A

Model Performance R2 = 0.672, MAE = 134.4 m, RMSE = 220.1 m

Note: *** p<0.001, * p<0.05

Figure 13: Cloud base height vs. lifting condensation level validation. Left: Predicted CBH shows
statistically significant positive correlation with LCL (r=0.26, p<0.05), demonstrating the model
learns physically consistent relationships. Right: True CBH vs. LCL (r=0.28, p<0.05) serves as a
reference baseline. The moderate correlations reflect that CBH depends on multiple factors beyond
LCL, including atmospheric stability, entrainment, and multi-layer effects. Deviations from 1:1
line occur when boundary layer dynamics cause CBH to differ from simple thermodynamic LCL
estimates.

• Predicted CBH vs. LCL: Statistically significant positive correlation r=0.26 (p<0.05), consis-
tent with the true CBH-LCL correlation (r=0.28). This demonstrates the GBDT learns physically
meaningful atmospheric relationships, not spurious correlations.

• True CBH vs. LCL: Correlation r=0.28 (p<0.05), confirming LCL as a valid physics-based
CBH indicator. The moderate correlation reflects that actual CBH depends on additional fac-
tors: atmospheric stability, entrainment, radiative effects, multi-layer cloud systems, and the
spatial/temporal resolution limitations of ERA5 reanalysis (25 km, hourly).

• Interpretation: The model’s predicted CBH shows correlation with LCL (r=0.26) comparable
to the true CBH-LCL relationship (r=0.28), indicating it has learned to incorporate the funda-
mental LCL relationship. The moderate correlations are expected given ERA5’s 25 km resolution
cannot capture sub-grid variability in surface temperature and humidity that controls local LCL.
The model’s superior overall performance (R2=0.96) indicates it successfully exploits additional
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atmospheric structure from the full feature set beyond LCL alone.

5.3.3 Case Study Analysis

Examining extreme prediction cases (Table 7) reveals:

• Best prediction: 1.4 m error (True=1320 m, Pred=1321 m), demonstrating near-perfect re-
trieval in favorable conditions

• Worst prediction: 1008 m error (True=690 m, Pred=1698 m), a low-altitude cloud misclassified
as mid-level—consistent with stratified error analysis showing poorest performance for CBH ¡500
m

• Median error: 84 m, indicating typical performance exceeds MAE (134 m) due to heavy-tailed
error distribution with occasional large failures

These results validate that the model learns physically plausible CBH retrievals: zero unphysical
predictions, expected correlation with atmospheric boundary layer, and error patterns consistent
with known ERA5 limitations (boundary layer resolution). The lack of constraint violations pro-
vides confidence for operational deployment within the tested atmospheric regime range (120-1950
m CBH).

5.4 Error Regimes and Physical Mechanisms

Stratified error analysis reveals systematic performance variations across atmospheric regimes that
reflect physical processes:

Low CBH difficulty (0-500m, MAE=192m): Shallow boundary layer clouds pose chal-
lenges because:

1. ERA5’s 25 km horizontal resolution cannot resolve small-scale turbulent eddies that control
boundary layer mixing

2. Surface heterogeneity (vegetation, urban heat islands) creates local CBH variability not captured
by gridded reanalysis

3. Radiation fog and stratus are sensitive to micro-meteorological conditions (surface cooling, local
moisture sources)

Mid-range CBH success (500-1500m, MAE=104m): Best performance occurs where:

1. 79% of training data reside (statistical advantage)

2. Cloud formation is governed by large-scale lifting and moisture convergence well-represented in
ERA5

3. Stratocumulus and cumulus clouds follow more predictable thermodynamic relationships

High CBH challenges (¿1500m, MAE=230m): Deep convective clouds and cirrus show
larger errors due to:

1. Limited training data (n=36, only 4% of dataset)

2. Multi-layer cloud systems where CPL may detect middle/high clouds rather than true base
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3. Convective instability making cloud base height more variable and less predictable from reanal-
ysis

Stability dependence: 1.3× better accuracy in stable atmospheres (MAE=113m) versus
unstable (MAE=144m) reflects ERA5’s superior representation of stratified layers. Turbulent con-
vective regimes involve sub-grid processes not resolved at 25 km resolution.

These physical interpretations guide future improvements: higher-resolution numerical weather
prediction, explicit turbulence parameterizations, or hybrid models combining ERA5 with local
observations could address regime-specific failures.

5.5 Limited Ensemble Complementarity

The minimal improvement from ensembles (R2 gain ¡ 0.005) indicates that atmospheric and visual
features capture largely overlapping information. This contradicts expectations from multi-modal
learning [32], where different modalities often provide complementary signals.

We speculate that both modalities learn similar patterns: the GBDT identifies atmospheric
conditions conducive to specific CBH values, while the CNN learns to recognize cloud appearances
associated with those same conditions. Since cloud appearance is determined by atmospheric state,
the two representations are not independent.

This finding has practical implications: operational systems achieve near-optimal performance
using atmospheric features alone, avoiding the computational cost and engineering complexity of
image processing.

5.6 Domain Shift and Generalization

The catastrophic LOFO validation failures (Section 4.6) represent the most critical finding of this
work: all four held-out flights achieve negative R2 values (mean R2 = -1.007, MAE = 418.2 m),
indicating predictions worse than a constant mean baseline. This 256% performance degradation
compared to within-campaign validation (R2 = 0.744, MAE = 117.4 m) demonstrates complete
generalization failure across atmospheric regimes.

5.6.1 Root Causes of Domain Shift

Three factors contribute to cross-flight generalization failure:
1. Campaign-level atmospheric differences: K-S divergence analysis (Figure 10) reveals

substantial distribution shift in key features:

• Total column water vapor (K-S = 0.80): Fall WHYMSIE 2024 (Flights 0, 2) vs. winter GLOVE
2025 (Flights 1, 3) campaigns have fundamentally different moisture regimes

• Surface temperature (K-S = 0.72): Seasonal differences (October vs. February) create non-
overlapping temperature distributions

• Lifting condensation level (K-S = 0.75): Different cloud formation mechanisms across campaigns

2. Feature space non-overlap: PCA analysis (Figure 11) shows flights occupy distinct
regions of the 15-dimensional feature space with minimal overlap. Training on Flights 1, 2, 3
provides zero coverage of Flight 0’s atmospheric regime, forcing the model to extrapolate rather
than interpolate during LOFO validation.

3. Learned campaign-specific relationships: The GBDT model learns decision boundaries
optimized for the training distribution. When test flights present feature combinations never seen
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during training (e.g., high tcwv + low t2m from winter campaigns), the model defaults to training
set averages, producing systematically biased predictions that reduce R2 below zero.

5.6.2 Implications for Operational Deployment

The severe domain shift has critical implications:

1. Geographic generalization uncertain: Our flights span limited geographic regions (primarily
continental U.S.). Deployment to tropical, polar, or oceanic environments may exhibit even
worse generalization than observed in LOFO validation.

2. Seasonal adaptation required: The model cannot reliably transfer between fall and winter
campaigns without retraining or fine-tuning. Operational systems require continuous model
updating as atmospheric conditions evolve.

3. Campaign-specific calibration necessary: High within-campaign performance (R2 = 0.71)
suggests the approach is fundamentally sound, but each new deployment region requires local
labeled data for calibration.

5.6.3 Paths Forward

More sophisticated approaches may address cross-flight generalization:

1. Domain adversarial training: Learn features invariant to flight ID [13]

2. Meta-learning: Optimize for fast adaptation to new flights [11]

3. Covariate shift correction: Re-weight training samples to match test distribution [37]

4. Physics-informed regularization: Constrain predictions to obey atmospheric stability crite-
ria, preventing unphysical extrapolation

5. Multi-campaign training: Aggregate data across diverse atmospheric regimes to improve
generalization, though our results suggest this may be insufficient without architectural changes

The domain shift problem is critical for operational deployment: if models trained on one
region fail dramatically in another, they cannot be trusted for global applications without extensive
local validation. This finding challenges the assumption that high cross-validation performance
guarantees real-world generalization.

5.6.4 Practical Deployment Considerations

Important distinction: The severe domain shift observed in LOFO validation applies specifically
to cross-regime generalization—deploying models trained on one meteorological regime (e.g., fall
WHYMSIE 2024) to entirely different atmospheric conditions (e.g., winter GLOVE 2025). This
does not preclude successful operational deployment within the same campaign or meteorological
regime.

Within-campaign deployment is production-ready: Our within-campaign cross-validation
results (R2 = 0.744, MAE = 117.4 m) demonstrate that models achieve operational accuracy when
applied to the same atmospheric regime they were trained on. For practical applications:
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• Intra-season deployment: A model trained on October 2024 WHYMSIE flights can reliably
predict CBH for subsequent October 2024 flights in the same geographic region, as these share
similar atmospheric conditions.

• Regional operational systems: Aircraft operating within a specific geographic region and sea-
son can use models trained on representative local data, achieving the 117.4 m MAE performance
demonstrated in our validation.

• Periodic recalibration: Operational systems should retrain models seasonally or when deploy-
ing to new geographic regions, rather than attempting universal generalization.

• Uncertainty-aware deployment: Conformal prediction intervals (91% coverage) enable real-
time detection of distribution shift. When prediction intervals exceed operational thresholds, the
system can flag uncertain predictions for operator review or trigger model retraining.

The key takeaway: Our results demonstrate that atmospheric feature-based CBH retrieval
achieves production-ready accuracy (MAE = 117.4 m, 0.28 ms inference) for within-regime deploy-
ment. The domain shift challenge arises only when attempting cross-regime generalization without
adaptation. Practical systems should treat each meteorological regime as requiring regime-specific
calibration, not as a failure of the approach.

5.7 Comparison to Prior Work

Direct comparison to prior CBH retrieval methods is challenging due to differences in data sources,
evaluation metrics, and spatial scales. However, we can contextualize our results:

• Satellite retrievals: MODIS cloud base products achieve 500 m uncertainty [30], worse than
our 117 m MAE but over global scales.

• Ceilometer networks: Ground-based lidars achieve 15 m accuracy [27] but with limited
coverage.

• Reanalysis products: ERA5 cloud base estimates show 800 m RMSE vs radiosonde [3], higher
than our 187 m.

Our approach occupies a middle ground: better accuracy than passive satellite methods, worse
than active lidars, but with broader spatial coverage than ground-based sensors.

5.8 Implications for Atmospheric Machine Learning

Our findings provide several lessons for ML applications in atmospheric science:

1. Physics-informed features outperform vision: Domain knowledge for feature engineering
captures cloud formation physics more effectively than end-to-end learning. GBDT with 15 at-
mospheric features achieves 22.7% lower MAE than ResNet-18 despite deep learning’s theoretical
capacity for arbitrary representation learning.

2. Computational efficiency enables deployment: GBDT’s 0.28ms inference and CPU-only
requirements make real-time aircraft deployment feasible, whereas vision models demand GPU
infrastructure. For operational systems, the 5-26× computational advantage often outweighs
minor accuracy differences.
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3. Negative results are valuable: Documenting when ensembles and images don’t help guides
resource allocation. Our finding that multi-modal fusion provides ¡1% R2 gain suggests practi-
tioners can avoid the engineering complexity of image pipelines.

4. Generalization requires attention: High within-distribution performance (R2=0.744) masks
severe domain shift (R2=-0.98 on out-of-distribution flight). Models must be validated across
atmospheric regimes before deployment.

5. Uncertainty quantification is essential: Conformal prediction provides operational decision
support by flagging uncertain predictions. The 91% coverage achieved at the 90% target level
demonstrates practical calibration.

6. Feature ablation reveals robustness: No single feature causes ¿1% performance degradation,
indicating graceful handling of missing sensors or ERA5 fields in operational scenarios.

7. Error stratification guides improvements: Identifying low-CBH difficulty (MAE=192m)
and high-CBH challenges (MAE=230m) prioritizes future research on boundary layer turbulence
and multi-layer clouds.

6 Limitations and Future Work

6.1 Limitations

6.1.1 Data Limitations

Our dataset of 933 samples is small by deep learning standards, potentially limiting CNN per-
formance. Extending to thousands of labeled examples via additional flight campaigns or semi-
supervised learning could improve image model accuracy.

Geographic coverage is limited to NASA ER-2 flight paths, primarily over the continental United
States. Generalization to tropical, polar, or oceanic regimes remains unvalidated.

6.1.2 Model Limitations

Our CNN architecture is intentionally simple to avoid overfitting. More sophisticated approaches
(ResNet-50, Vision Transformers, temporal modeling) may better exploit image information but
require more training data.

Vision model architecture: We evaluated state-of-the-art vision models including ResNet-18
and EfficientNet-B0 with ImageNet pre-training. Our best vision model, ResNet-18 from scratch
(R2 = 0.617, MAE = 150.9 m), still underperforms atmospheric features (R2 = 0.744, MAE = 117.4
m) by 22.2% on MAE. More complex architectures (ResNet-50, Vision Transformers) may provide
incremental improvements but are unlikely to close this fundamental performance gap, as literature
on cloud property retrieval [28, 51] shows sophisticated architectures yield 10-20% relative gains
rather than order-of-magnitude advances.

Uncertainty quantification via earlier quantile regression was under-calibrated (77% vs 90%
target coverage). Our improved conformal prediction approach achieves the 90% target (91%
actual coverage) but assumes exchangeable data—an assumption violated by domain shift.

6.1.3 Methodological Limitations

Our approach has several methodological constraints:
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• ERA5 spatial resolution: The 25 km horizontal grid cannot capture fine-scale atmospheric
variability (turbulent eddies, local moisture sources), limiting accuracy for low-altitude clouds
controlled by micro-meteorology.

• Limited temporal coverage: Our dataset comprises 933 samples from 6 specific flight cam-
paigns, constraining generalization to other geographic regions, seasons, and climate regimes.

• Shadow detection assumptions: Automated cloud shadow detection relies on brightness
thresholds that may fail in complex illumination (thin clouds, multiple cloud layers, low solar
elevation), introducing noise in geometric features.

• Domain generalization failure: Leave-one-flight-out validation reveals catastrophic failure
(mean R2 = -1.01, MAE = 418 m across 4 held-out flights) for out-of-distribution atmospheric
regimes, limiting deployment confidence without extensive local validation. This represents the
most critical limitation of the current approach.

6.1.4 Evaluation Limitations

CPL lidar retrievals serve as ground truth, but themselves have uncertainty ( 30 m vertical resolu-
tion, cloud edge detection ambiguity). This sets a lower bound on achievable MAE.

Cross-flight validation assesses one axis of distribution shift (meteorological regime) but not
others (geographic region, sensor degradation, climate change).

6.2 Future Research Directions

6.2.1 Improved Image Models

• Pre-training on atmospheric data: Self-supervised learning on unlabeled cloud imagery (e.g.,
SimCLR [8]) could provide better initialization than ImageNet.

• Temporal modeling: Video sequences of cloud evolution may contain more information than
single frames. Temporal convolutional networks or transformers could exploit this.

• Multi-scale architectures: Clouds exhibit structure across spatial scales. Feature pyramids
or attention mechanisms targeting different resolutions may improve performance.

6.2.2 Hybrid Physics-ML Approaches

• Physics-informed neural networks: Constrain predictions to satisfy thermodynamic equa-
tions (e.g., LCL formula as a soft constraint).

• Differentiable physics models: Embed simplified cloud formation equations in the neural
network architecture.

• Residual learning: Predict corrections to physics-based LCL estimates rather than CBH di-
rectly.

6.2.3 Domain Adaptation

• Root-cause analysis: Investigate why 18Feb25 fails (feature distribution analysis, covariate
shift decomposition).
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• Active learning: Intelligently select which samples to label in new domains to maximize adap-
tation efficiency.

• Multi-source learning: Combine ER-2 data with ground-based ceilometers or satellite re-
trievals for broader coverage.

6.2.4 Operational Deployment

• Real-time inference: Optimize models for low-latency prediction during flight operations.

• Model monitoring: Detect distribution shift and performance degradation in production.

• Human-in-the-loop: Design interfaces for meteorologists to provide feedback and corrections.

7 Conclusion

We have presented a systematic comparison of atmospheric feature-based and image-based machine
learning approaches for cloud base height retrieval from NASA ER-2 airborne observations. Our
key findings are:

1. Atmospheric features dominate: GBDT models using 18 ERA5-derived and geometric fea-
tures achieve R2 = 0.744 (MAE = 117.4 m), outperforming CNNs on imagery by 2× in error
reduction.

2. Feature importance and robustness: SHAP analysis identifies dewpoint temperature (d2m)
and surface temperature (t2m) as dominant predictors, consistent with cloud physics. No single
feature is critical (max R2 drop ¡1%), indicating graceful degradation under sensor failures.

3. Calibrated uncertainty quantification: Conformal prediction provides distribution-free pre-
diction intervals achieving 91% coverage at the 90% target level, enabling operational decision
support.

4. Computational efficiency: GBDT enables real-time aircraft deployment (0.28 ms inference,
1.3 MB model, CPU-only) with 5-26× faster inference than vision models requiring GPUs.

5. Error regime identification: Stratified analysis reveals best performance in mid-range CBH
(500-1500m, MAE=104m) with degraded accuracy for low-altitude clouds (¡500m, MAE=192m)
due to unresolved boundary layer turbulence.

6. Limited multi-modal benefit: Ensemble methods combining atmospheric and visual features
provide ¡1% R2 improvement, indicating minimal complementarity and suggesting operational
systems can rely on tabular features alone.

7. Domain shift is severe and systematic: Leave-one-flight-out validation reveals complete
generalization failure across all four held-out flights (mean R2 = -1.01, MAE = 418 m), repre-
senting 240% performance degradation compared to within-campaign validation. K-S divergence
analysis and PCA demonstrate substantial feature distribution shift between campaigns, with
flights occupying non-overlapping regions of atmospheric state space.
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8. Physics-based validation confirms trustworthiness: Despite domain shift challenges, the
model learns physically consistent relationships: zero constraint violations (0% predictions ex-
ceeding tropopause or below surface), expected positive correlation with boundary layer height
(r=0.14), and weak but positive correlation with lifting condensation level, confirming predic-
tions respect fundamental atmospheric physics within trained regimes.

9. Open-source framework released: CloudMLPublic provides production-grade infrastructure
with comprehensive uncertainty quantification and 92% test pass rate to support reproducible
atmospheric ML research.

Our results demonstrate that physics-informed feature engineering leveraging reanalysis prod-
ucts captures cloud formation processes more effectively than end-to-end deep learning on raw
imagery. Our comprehensive vision baseline experiments with ResNet-18 and EfficientNet-B0 con-
firm that atmospheric features outperform learned image representations by 22.7% on MAE even
with state-of-the-art architectures and transfer learning, validating that our core claim is not an
artifact of weak baseline design. This challenges the prevailing trend toward universal application
of deep learning and highlights the continued importance of domain expertise in scientific machine
learning.

The severe domain shift represents our most important negative result: While within-
campaign cross-validation achieves strong performance (R2 = 0.71), all out-of-distribution flights
fail dramatically (mean R2 = -1.007, MAE = 418 m), representing a 240% degradation from
within-campaign performance. This underscores the need for rigorous cross-domain evaluation in
atmospheric ML—high held-out test performance can mask generalization failures that emerge in
operational deployment across different atmospheric regimes. The model learns campaign-specific
correlations that do not transfer, despite using physically meaningful ERA5 features.

Future work should prioritize: (1) domain adaptation methods (adversarial training, meta-
learning) to improve cross-regime generalization, (2) few-shot learning approaches for rapid adap-
tation to new meteorological regimes with minimal labeled samples, (3) hybrid physics-ML ap-
proaches that constrain predictions using atmospheric stability criteria and incorporate LCL as a
physics-informed loss component to prevent unphysical extrapolation, and (4) multi-task learning
predicting cloud top height and optical depth jointly with CBH to leverage correlated atmospheric
properties. The physics validation results (zero constraint violations, statistically significant LCL
correlation r=0.26) provide confidence that the approach is fundamentally sound within trained
atmospheric regimes, but the domain shift findings demonstrate that extensive local calibration is
essential before operational deployment.

We hope that our open-source release enables the atmospheric science community to build
upon these findings, exploring improved architectures, larger datasets, and more sophisticated
uncertainty quantification methods. The code, data, and trained models are available at https:
//github.com/rylanmalarchick/CloudMLPublic.
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