
Parallelizing the Variational Quantum Eigensolver:

High Performance Computing for Molecular Ground State Energy

Ashton Steed and Rylan Malarchick
MA453 - High Performance Computing

Fall 2025

December 1, 2025

Abstract

The Variational Quantum Eigensolver (VQE) is a hybrid quantum-classical algorithm used
to compute ground state energies of molecular systems. This project implements VQE to calcu-
late the potential energy surface of the hydrogen molecule (H2) across 100 bond lengths using
the PennyLane quantum computing framework on the ERAU Vega HPC cluster featuring 4×
NVIDIA H100 GPUs (80GB each). We present a comprehensive parallelization study with
four phases: (1) Optimizer + JIT compilation achieving 4.13× speedup, (2) GPU device
acceleration achieving 3.60× speedup at 4 qubits scaling to 80.5× at 26 qubits, (3) MPI par-
allelization achieving 28.5× speedup, and (4) Multi-GPU scaling achieving 3.98× speedup
with 99.4% parallel efficiency across 4 H100 GPUs. The combined effect yields 117.85× total
speedup for the H2 potential energy surface (593.95s → 5.04s). We conduct a CPU vs GPU
scaling study from 4–26 qubits, finding GPU advantage at all scales with speedups ranging from
10.5× to 80.5×. Multi-GPU benchmarks demonstrate near-perfect scaling with 99.4% efficiency
and establish that a single H100 can simulate up to 29 qubits (8GB state vector, 32GB es-
timated GPU memory) before hitting memory limits. The optimized implementation reduces
runtime from nearly 10 minutes to 5 seconds, making interactive quantum chemistry exploration
practical.

1 Introduction

1.1 Background

Quantum chemistry calculations help us understand how molecules are structured, how chemical
reactions occur, and what properties materials have. A central problem in computational chem-
istry is finding the ground state energy (lowest energy configuration) and wavefunction (quantum
state description) of a molecule. However, exact quantum mechanical calculations become expo-
nentially harder as molecules get larger, making traditional computer methods impractical for large
molecules.

The Variational Quantum Eigensolver (VQE) is a promising quantum algorithm that combines
both quantum and classical computing [?]. Unlike purely quantum algorithms that need perfect
quantum computers, VQE works on today’s noisy quantum computers. The algorithm uses a
quantum circuit (called an ansatz) with adjustable parameters to create trial wavefunctions on a
quantum processor, while a classical computer adjusts these parameters to find the lowest energy.

For this project, we focus on the hydrogen molecule (H2), the simplest neutral molecule, which
serves as a benchmark system for quantum chemistry methods. Despite its simplicity, H2 exhibits

1

key features of chemical bonding including equilibrium bond length, dissociation energy, and po-
tential energy surface structure.

1.2 Issues and Questions to be Addressed

This project addresses two primary questions:

1. Quantum Chemistry: Can VQE accurately compute the H2 potential energy surface using
a minimal ansatz with a single variational parameter?

2. High Performance Computing: How effectively can the VQE algorithm be parallelized
to reduce computational time, and what speedups can be achieved through JIT compilation,
multiprocessing, and distributed computing on HPC clusters?

The serial implementation provides a performance baseline, while the parallel implementations
demonstrate excellent scaling behavior and efficiency gains relevant to larger quantum chemistry
calculations.

2 Problem Description

2.1 The Molecular Hamiltonian Problem

The goal is to compute the ground state energy E0 of the H2 molecule as a function of internuclear
distance d. The electronic Hamiltonian in the Born-Oppenheimer approximation is:

H = −1

2

2∑
i=1

∇2
i −

2∑
i=1

(
1

|ri −RA|
+

1

|ri −RB|

)
+

1

|r1 − r2|
+

1

d
(1)

where ri are electron positions, RA and RB are nuclear positions separated by distance d, and
atomic units are used.

This continuous-space Hamiltonian must be converted to a finite basis set (we use STO-3G, a
minimal basis set) and then transformed into qubit operators that quantum computers can work
with using a method called the Jordan-Wigner transformation.

2.2 Computational Task

The specific computational problem is:

• Input: Set of bond lengths {d1, . . . , d100} uniformly spaced from 0.1 to 3.0 Å

• Output: Ground state energies {E1, . . . , E100} at each bond length

• Constraint: Each energy must converge to sufficient accuracy (200 VQE iterations)

• Objective: Minimize total wall-clock time while maintaining accuracy

The key computational challenge is that each bond length requires:

• Hartree-Fock calculation to generate molecular Hamiltonian

• 200 quantum circuit evaluations with gradient computation

• Parameter updates via Adam optimizer

This results in 8,000 total circuit evaluations taking approximately 50 seconds in the serial
implementation.

2

3 Model Formulation

3.1 The Variational Principle

VQE uses the variational principle from quantum mechanics: for any trial wavefunction |ψ(θ)⟩ with
adjustable parameters θ, the energy we calculate will always be greater than or equal to the true
ground state energy:

E(θ) = ⟨ψ(θ)|H|ψ(θ)⟩ ≥ E0 (2)

where E0 is the true ground state energy and H is the molecular Hamiltonian. By finding the
parameters θ that give the lowest energy E(θ), we get a good approximation to the true ground
state.

3.2 Molecular Hamiltonian in Second Quantization

For the H2 molecule, the electronic Hamiltonian in second quantization is:

H =
∑
i,j

hija
†
iaj +

1

2

∑
i,j,k,ℓ

hijkℓa
†
ia

†
jakaℓ (3)

where:

• hij are one-electron integrals (kinetic energy and nuclear attraction)

• hijkℓ are two-electron integrals (electron-electron repulsion)

• a†i , ai are fermionic creation and annihilation operators

These integrals are computed using the Hartree-Fock method with the STO-3G basis set, then
mapped to Pauli operators on 4 qubits via the Jordan-Wigner transformation.

3.3 Quantum Circuit Ansatz

The trial wavefunction is prepared using a parameterized quantum circuit:

|ψ(θ)⟩ = U(θ)|HF⟩ (4)

where:

• |HF⟩ = |1100⟩ is the Hartree-Fock reference state (both electrons in lowest spatial orbital
with opposite spins)

• U(θ) is a unitary operator implemented as a double excitation gate

The double excitation gate is:

U(θ) = exp

(
−iθ

2
(a†0a

†
1a2a3 − a

†
3a

†
2a1a0)

)
(5)

This ansatz captures the most important electron correlation effects in H2 (both electrons
moving together from bonding to antibonding orbitals) while only needing a single adjustable
parameter θ. From a computational perspective, this gate is a parameterized unitary matrix applied
to the 2N -dimensional state vector. The optimization problem reduces to finding the parameter θ
that minimizes a matrix expectation value—a task well-suited to gradient-based optimization and
GPU acceleration.

3

3.4 Optimization Problem

The VQE algorithm finds the parameter value that gives the lowest energy:

θ∗ = argmin
θ
E(θ) = argmin

θ
⟨ψ(θ)|H|ψ(θ)⟩ (6)

We use the Adam optimizer with:

• Learning rate: α = 0.01

• Iterations per bond configuration: Niter = 200

• Initial parameter: θ0 = 0 (starts at Hartree-Fock state)

4 Methods

4.1 Problem Structure and Parallelization Opportunities

The computational task consists of computing the potential energy surface by evaluating E(θ∗) for
Nb = 100 bond lengths in the range [0.1, 3.0] Å. For each bond length di:

1. Generate molecular Hamiltonian H(di) using Hartree-Fock

2. Initialize variational parameters θ0 = 0

3. Optimize: θ∗i = Adam(E(θ), θ0, Niter = 200)

4. Store ground state energy Ei = E(θ∗i)

The key insight is that these calculations are embarrassingly parallel—each bond length
calculation is completely independent and doesn’t need data from other calculations:

Ei = f(di) for i = 1, . . . , 100 (7)

where f is the VQE optimization procedure.

4.2 Serial Algorithm Implementation

The baseline serial implementation follows Algorithm ??.
Implementation Details:

• Software Versions: Python 3.12, PennyLane 0.43.1, PennyLane-Catalyst 0.13.0, JAX 0.6.2,
Optax 0.2.6, CUDA 11.8, OpenMPI 4.x

• Basis Set: STO-3G minimal basis (4 spin-orbitals → 4 qubits)

• Hamiltonian Method: DHF (built-in Hartree-Fock solver)

• Device: PennyLane Lightning simulator (CPU: lightning.qubit, GPU: lightning.gpu)

• Gradient Method: Automatic differentiation via PennyLane/Catalyst

4

Algorithm 1 Serial VQE for H2 Potential Energy Surface

1: Input: Bond lengths {d1, . . . , d100}
2: Output: Energies {E1, . . . , E100}
3:

4: Initialize quantum device: lightning.qubit with 4 qubits
5: Define ansatz with Hartree-Fock initialization
6:

7: for i = 1 to 100 do
8: Generate H(di) using Hartree-Fock (STO-3G basis)
9: θ ← 0

10: Initialize Adam optimizer with α = 0.01
11: for j = 1 to 200 do
12: E ← ⟨ψ(θ)|H(di)|ψ(θ)⟩ ▷ Quantum circuit evaluation
13: ∇θE ← compute gradient via parameter-shift rule
14: θ ← Adam step(θ,∇θE)
15: end for
16: Ei ← E(θ) ▷ Store converged energy
17: end for
18: return {E1, . . . , E100}

4.3 Computational Complexity

Each quantum circuit evaluation requires O(4n) operations for an n-qubit system using classical
simulation. For our 4-qubit system:

• State vector dimension: 24 = 16 complex amplitudes

• Operations per circuit: O(162) = O(256) for state preparation and measurement

• Gradient evaluations: 2 circuit evaluations per parameter (parameter-shift rule)

• Circuit evaluations per bond length: ∼200–400 (optimization + gradients)

• Total circuit evaluations: ∼8,000–16,000

4.4 Proposed Parallelization Approaches

We propose a three-phase optimization strategy:

4.4.1 Phase 1: JIT Compilation with JAX

Method: Apply Catalyst just-in-time (JIT) compilation to the cost function using JAX integration
in PennyLane. Optax, a JAX-Compatible optimizer library, is used in place of Pennylane’s builtin
Adam optimizer. Implementation:

import jax

dev = qml.device("lightning.qubit", wires=4)

@jax.jit

@qml.qnode(dev, interface="jax")

5

def cost_fn(params):

ansatz(params)

return qml.expval(H)

Cost and Update snippet for Optax

grads = grad_fn(params)

new_opt_state = optimizer.update(grads, curr_opt_state, params)

new_params = optax.apply_updates(curr_params,updates)

new_energy = cost_fn(new_params)

Expected Speedup: 2–5× from:

• Pre-compiling the circuit and optimization for faster execution

• Combining operations to reduce memory access time

• Computing gradients more efficiently using vector operations

4.4.2 Phase 2: Distributed-Memory Parallelism

Method: Use OpenMPI with mpi4py to parallelize the outer loop over bond lengths.
Implementation Strategy:

from mpi4py import MPI

\# 2. Master Rank (0) defines the workload

if rank == 0:

print(f"--- Starting MPI VQE Scan with \{size\} processes ---")

full_bond_lengths = np.linspace(START_DIST, END_DIST, NUM_POINTS)

chunks = np.array_split(full_bond_lengths, size) # Split data into chunks

else:

chunks = None

#Scatter numpy chunks to processes

my_chunk = comm.scatter(chunks, root=0)

The root process creates the array of bond lengths and scatters it to all other processes. Each
process has its own JIT compilation, and runs the optimized serial VQE for its dataset. Data is
then gathered with com.gather().

Expected Speedup: 0.8p for p cores (slightly less than ideal due to communication overhead
and individual JIT compilation time)

4.4.3 Phase 3: Why MPI Over Ray

We initially considered the Ray distributed computing framework for multi-node parallelization due
to its high-level task-based API. However, during development we encountered persistent depen-
dency conflicts between Ray and the PennyLane/Catalyst/JAX ecosystem. The Ray pip package
repeatedly failed to install alongside PennyLane-Catalyst due to incompatible transitive dependen-
cies, and attempts to resolve version constraints proved time-consuming without success.

Given these practical constraints, we selected MPI (via mpi4py) as our distributed-memory
solution. MPI offered several advantages for our use case:

6

• Mature HPC integration: Native support on the ERAU Vega cluster with optimized
OpenMPI

• Minimal overhead: Direct scatter-gather communication patterns with no daemon pro-
cesses

• Proven compatibility: No conflicts with PennyLane, Catalyst, or JAX packages

• Static workload fit: Our embarrassingly parallel workload (fixed bond lengths) does not
require Ray’s dynamic task scheduling

The MPI implementation uses the same JIT-compiled VQE runner as Phase 1, with each
MPI rank independently compiling and executing its assigned subset of bond lengths. Results are
gathered to the root process for aggregation and plotting.

Expected Speedup: Near-linear scaling for p ≤ Nb processes, where Nb = 100 is the number
of bond lengths

4.5 Performance Prediction Model

Using Amdahl’s law to predict strong scaling with p processors:

Sp =
1

fs +
fp
p

(8)

where:

• fs ≈ 0.05 is the serial fraction (initialization, I/O, plotting)

• fp ≈ 0.95 is the parallel fraction (VQE optimizations)

Predicted speedups are shown in Table ??.

Processors Ideal Speedup Predicted Speedup

4 4.0× 3.48×
8 8.0× 6.15×
16 16.0× 10.39×
40 40.0× 18.87×

Table 1: Predicted parallel speedup using Amdahl’s law with fs = 0.05.

5 Solution

5.1 Serial Implementation Results

The serial VQE implementation successfully computed the H2 potential energy surface across 100
bond lengths. Performance metrics are shown in Table ??.

The potential energy curve exhibits the expected physical behavior for H2:

• Bonding region at small bond lengths (d < 0.74 Å)

• Equilibrium bond length near deq ≈ 0.74 Å

7

Metric Value

Total Runtime 50.64 seconds
Time per Bond Length 1.27 seconds
Time per VQE Iteration 6.3 ms
Circuit Evaluations/sec 157.98
Total Circuit Evaluations 8,000

Table 2: Serial implementation performance metrics.

• Dissociation to separated atoms at large distances (d > 2.5 Å)

Figure ?? shows the computed potential energy surface.

Figure 1: H2 potential energy surface computed with serial VQE implementation. The curve shows
the characteristic bonding minimum near 0.74 Å and dissociation behavior at large bond lengths.

5.2 Parallel Implementation Results

We implemented and benchmarked parallelization strategies on the ERAU Vega HPC cluster fea-
turing AMD EPYC 9654 96-Core processors (192 cores total) with 4 NVIDIA H100 GPUs. GPU
infrastructure has been configured but benchmarks focus on CPU-based JIT compilation and MPI
parallelization. All implementations used 100 bond lengths with 300 VQE iterations per bond
length for consistency.

5.2.1 Hardware Platform

Compute Node (gpu01):

• CPU: 2× AMD EPYC 9654 (96 cores each, 192 cores per node)

8

• Memory: 1.5 TB shared memory

• GPU: 4× NVIDIA H100 PCIe (81 GB each, 320 GB total)

• Interconnect: High-performance cluster interconnect

5.2.2 Implementation 1: Serial Baseline with PennyLane

The serial implementation using PennyLane’s AdamOptimizer served as our performance baseline:

• Runtime: 593.95 seconds (9.90 minutes)

• Time per bond length: 5.94 seconds

• Framework: PennyLane 0.43.1 with Lightning CPU backend

5.2.3 Implementation 2: Serial Optax+JIT (CPU)

We implemented JIT compilation using Catalyst with the Optax optimizer on CPU (vqe serial optax.py):

• Runtime: 143.80 seconds (2.40 minutes)

• Speedup: 4.13× vs Serial PennyLane Adam

• Framework: JAX + Catalyst + Optax optimizer

• Device: lightning.qubit (CPU backend)

This implementation serves as the critical control experiment that isolates the optimizer+JIT
effect from parallelization. The 4.13× speedup demonstrates the significant benefit of JIT compi-
lation and the more efficient Optax optimizer compared to PennyLane’s built-in AdamOptimizer.

5.2.4 Implementation 3: GPU Acceleration

We implemented GPU acceleration using PennyLane’s lightning.gpu device with Optax optimizer
(vqe gpu.py):

• Runtime: 164.91 seconds (2.75 minutes)

• Speedup: 3.60× vs Serial PennyLane Adam

• Framework: Optax optimizer (no Catalyst due to dependency conflict)

• Device: lightning.gpu (NVIDIA H100)

Key Finding: CPU+JIT (143.80s) outperforms GPU (164.91s) for our 4-qubit system. This
counterintuitive result occurs because:

• GPU kernel launch overhead dominates for small 16-dimensional state vectors

• JIT compilation enables adaptive early convergence (fewer iterations)

• Per-iteration time is faster on GPU (0.0145s vs 0.0204s), but JIT reduces total iterations

• GPU advantage increases with qubit count (>10 qubits)

9

5.2.5 Implementation 4: CPU vs GPU Scaling Study (4–26 Qubits)

To understand the crossover between CPU and GPU performance, we conducted a comprehensive
scaling study across qubit counts from 4 to 26. Results are shown in Table ??.

Qubits State Vector CPU (s) GPU (s) Speedup Winner

4 256 B 8.33 0.79 10.5× GPU
8 4 KB 6.54 1.07 6.1× GPU

12 64 KB 4.24 1.20 3.5× GPU
14 256 KB 9.10 0.90 10.1× GPU
16 1 MB 5.67 0.85 6.7× GPU
18 4 MB 12.03 0.84 14.3× GPU
20 16 MB 46.77 1.08 43.2× GPU
22 64 MB 161.07 2.21 72.9× GPU
24 256 MB 478.73 5.87 81.5× GPU
26 1 GB 1425.06 17.71 80.5× GPU

Table 3: CPU vs GPU scaling study. State vector size is 2n × 16 bytes (complex128). GPU wins
at all scales, with speedup increasing dramatically beyond 18 qubits.

Key Finding: Contrary to our initial 4-qubit H2 results, GPU wins at all qubit counts in this
scaling study. The difference is that the scaling study uses a simpler Hamiltonian (sum of Pauli-
Z operators) without the Hartree-Fock overhead present in the molecular simulation. The GPU
speedup increases from 10× at 4 qubits to over 80× at 24–26 qubits, demonstrating the importance
of GPU acceleration for larger quantum simulations.

Methodological Note: The scaling study uses a synthetic transverse-field Ising Hamiltonian
rather than molecular Hamiltonians generated via Hartree-Fock. This isolates the computational
cost of the VQE optimization algorithm itself from the overhead of quantum chemistry integral
generation, allowing direct measurement of GPU acceleration as a function of qubit count. The
qubit counts tested (4–26) correspond to state vector sizes that would be required for progressively
larger molecular systems with expanded basis sets.

Implementation Note: The GPU scaling study utilized PennyLane’s native Adam optimizer
rather than Optax due to compatibility constraints between Optax and the autograd interface
required by lightning.gpu with adjoint differentiation. This ensures consistent gradient compu-
tation across all qubit counts in the benchmark.

Figure ?? shows the scaling comparison.

5.2.6 Implementation 5: MPI Parallelization

MPI parallelization achieved dramatic speedups by distributing bond length calculations across
multiple CPU cores. Results are shown in Table ??.

5.2.7 Three-Factor Speedup Analysis

We decompose the total 117.85× speedup into three independent factors:

1. Factor 1: Optimizer + JIT Compilation (4.13×)

• Serial PennyLane Adam: 593.95s → Serial Optax+JIT: 143.80s

10

Figure 2: CPU vs GPU scaling study from 4–26 qubits. Left: Runtime comparison (log scale).
Right: GPU speedup factor, showing increasing advantage with qubit count.

Processes Runtime (s) vs Baseline vs Optax+JIT Efficiency (%)

1 (Serial Adam) 593.95 1.00× — —
1 (Optax+JIT) 143.80 4.13× 1.00× 100.0

2 8.45 70.29× 17.02× 851.0
4 6.07 97.85× 23.69× 592.2
8 5.48 108.39× 26.24× 328.0

16 5.06 117.38× 28.42× 177.6
32 5.04 117.85× 28.53× 89.2

Table 4: MPI strong scaling results. “vs Baseline” compares to Serial PennyLane Adam (593.95s).
“vs Optax+JIT” compares to Serial Optax+JIT (143.80s), the proper baseline for measuring MPI
parallelization effect. Efficiency calculated relative to Optax+JIT baseline.

• Components: Optax optimizer, Catalyst @qjit decorator, compiled gradients

• This is the algorithmic improvement, independent of parallelization

2. Factor 2: GPU Device Acceleration (3.60× to 80.5×)

• At 4 qubits: Serial PennyLane Adam: 593.95s → GPU lightning.gpu: 164.91s (3.60×)

• At 26 qubits: CPU: 1425s → GPU: 17.7s (80.5×)

• GPU advantage increases dramatically with qubit count

3. Factor 3: MPI Parallelization (28.53×)

• Serial Optax+JIT: 143.80s → MPI-32 Optax+JIT: 5.04s

• Using the correct Optax+JIT baseline (not the slower PennyLane Adam)

• Super-linear speedup due to embarrassingly parallel workload + cache effects

4. Factor 4: Multi-GPU Scaling (3.98×)

• 1 GPU: 31.99s → 4 GPUs: 8.04s for same workload

11

• 99.4% parallel efficiency across 4 H100 GPUs

• Enables throughput of ∼1 problem/second at 20 qubits

Combined Effect: 4.13× 28.53 ≈ 117.85 (Optimizer+JIT × MPI parallelization)
For larger qubit counts with multi-GPU: 80.5 × 3.98 ≈ 320× potential speedup vs single-core

CPU.
Key Observations:

1. Four-Factor Decomposition: The speedup story has four components: optimizer+JIT
(4.13×), GPU acceleration (up to 80.5×), MPI parallelization (28.53×), and multi-GPU scal-
ing (3.98×). These factors combine multiplicatively for different use cases.

2. GPU Scaling: The CPU vs GPU scaling study (4–26 qubits) shows GPU wins at all scales,
with speedup increasing from 10× at 4 qubits to 80× at 26 qubits. This contradicts our initial
H2 results where CPU+JIT beat GPU, which we attribute to Hartree-Fock overhead in the
molecular simulation.

3. Memory Limits: Single H100 (80GB) maxes out at 29 qubits. The state vector size grows as
2N ×16 bytes (complex128 amplitudes): at 26 qubits this is 1 GB, at 29 qubits 8 GB. Adjoint
differentiation requires ∼4× memory overhead for intermediate states, totaling ∼32GB at
29 qubits. While the H100’s HBM3 memory (3.35 TB/s bandwidth) can transfer a 1 GB
state vector in ∼0.3 ms, the repeated matrix-vector multiplications for gradient computation
saturate compute resources before memory bandwidth becomes the limiting factor. At 30
qubits, the estimated ∼64GB memory requirement approaches the H100’s 80GB limit; in
practice, this resulted in Out-Of-Memory errors due to memory fragmentation and additional
CUDA context overhead.

4. Near-Perfect Multi-GPU Efficiency: 99.4% parallel efficiency across 4 GPUs demon-
strates that VQE parameter sweeps are ideal for multi-GPU deployment with essentially zero
communication overhead.

5. Super-linear MPI Scaling: Relative to the Optax+JIT baseline, MPI-2 achieves 17×
speedup (efficiency 851%). This is because each MPI process runs JIT compilation indepen-
dently, and the embarrassingly parallel workload has zero communication overhead.

6. Proper Baseline Critical: Without the Serial Optax+JIT control experiment (143.80s),
we would have incorrectly attributed all 117× speedup to MPI parallelization rather than the
combination of algorithmic and parallel improvements.

Figure ?? shows comprehensive performance analysis across all implementations.
Figure ?? summarizes the multi-GPU benchmark results.

6 Discussion

6.1 Physical Interpretation of Results

The computed potential energy surface captures the essential quantum chemistry of the H2 molecule:
Equilibrium Geometry: The minimum energy occurs near deq ≈ 0.74 Å, which matches the

experimental bond length of 0.741 Å for ground state H2. This close agreement shows that our
VQE approach and choice of ansatz work well.

12

Figure 3: Performance analysis: (a) Runtime comparison across implementations, (b) Speedup vs
serial baseline, (c) MPI strong scaling with ideal linear scaling reference, (d) Parallel efficiency
showing plateau beyond 16 processes.

Bonding Energy: At equilibrium, the VQE energy is approximately Eeq ≈ −1.137 Hartree
(from the plotted curve). The exact energy for H2 in the STO-3G basis is −1.1372 Hartree, showing
our single-parameter ansatz achieves excellent accuracy.

Dissociation Behavior: As bond length increases beyond 2.5 Å, the energy approaches the
limit where the two hydrogen atoms are separated. The curve shows the expected gradual approach
to this limit, though our simple single-parameter ansatz has known limitations in accurately de-
scribing the dissociation region where electron correlation becomes very strong.

Ansatz Effectiveness: The double excitation ansatz with a single parameter works remarkably
well for H2 near equilibrium. This is because the most important correlation effect is both electrons
moving together from the bonding (σ) to antibonding (σ∗) orbital, which is exactly what the double
excitation operator captures.

HPC Focus: While the physical interpretation above validates the correctness of our VQE
implementation, the primary contribution of this work is the HPC parallelization strategy. The
quantum chemistry serves as a representative scientific workload; the parallelization techniques
(JIT compilation, GPU acceleration, MPI distribution) apply broadly to other variational quantum
algorithms.

13

Figure 4: Multi-GPU benchmark on 4× NVIDIA H100: (a) GPU memory scaling with qubit
count, showing the 80GB limit and maximum achieved simulation size of 29 qubits, (b) Multi-GPU
speedup demonstrating 4.0× improvement with 99.4% parallel efficiency.

6.2 Computational Performance Analysis

Serial Baseline: The serial implementation achieves 157.98 circuit evaluations per second, with
each full VQE optimization (200 iterations) taking approximately 1.27 seconds in our initial bench-
marks. However, on the HPC cluster with 100 bond lengths and 300 iterations, the serial runtime
increased to 593.95 seconds (9.90 minutes), indicating the more demanding workload significantly
impacts performance.

Bottleneck Identification: Performance profiling via Python’s cProfile confirmed that VQE
optimization dominates runtime. The profiler showed that gradient computation (grad with forward)
and cost function evaluation (qnode. call) together account for 28.2 seconds of the 32.7 second
computation time (86%), with the remaining time split between Hamiltonian generation and result
plotting. Excluding I/O and visualization overhead, more than 95% of computational work occurs
in the VQE optimization loops. This high fraction of parallelizable work (fp ≈ 0.95) is ideal for
achieving strong speedups from parallelization.

JIT Compilation Performance: The Serial Optax+JIT implementation achieved 4.13×
speedup (143.80s vs 593.95s). This improvement comes from:

• Pre-compilation of the quantum circuit and optimization loop via Catalyst @qjit

• More efficient Optax optimizer compared to PennyLane’s built-in Adam

• Compiled gradient computation via catalyst.grad

• Better memory access patterns from JAX optimizations

This control experiment is critical: it establishes the proper baseline (143.80s) for measuring
MPI parallelization effect, rather than conflating optimizer improvements with parallel speedup.

GPU Acceleration Results: The GPU implementation using lightning.gpu on NVIDIA
H100 showed scale-dependent performance:

• At 4 qubits (H2 molecule): 3.60× speedup, but CPU+JIT (143.80s) still wins vs GPU
(164.91s)

14

• At 26 qubits (scaling study): 80.5× speedup (1425s CPU → 17.7s GPU)

• GPU advantage increases dramatically with qubit count

The CPU vs GPU scaling study (4–26 qubits) revealed that GPU wins at all scales when using
a simple Hamiltonian. The discrepancy with our H2 results (where CPU+JIT won) is attributed
to Hartree-Fock overhead in molecular simulations that doesn’t benefit from GPU acceleration.

Multi-GPU Scaling Results: The 4× H100 benchmark demonstrated excellent multi-GPU
performance:

• Maximum qubits: Single H100 achieves 29 qubits before OOM (8GB state vector, ∼32GB
with adjoint overhead)

• Throughput: 0.98 problems/second with 4 GPUs working in parallel

• Scaling efficiency: 3.98× speedup with 99.4% parallel efficiency

• Memory limit: 30 qubits (64GB estimated) exceeds H100’s 80GB available memory

MPI Scaling Analysis (Corrected Baseline): The MPI implementation shows outstanding
performance when analyzed against the proper Optax+JIT baseline (143.80s):

• True MPI speedup: 28.53× from Serial Optax+JIT (143.80s) to MPI-32 (5.04s)

• Super-linear per-process: MPI-2 achieves 17× speedup (expected: 2×) due to cache effects
and independent JIT compilation per process

• Embarrassingly parallel: Zero communication overhead in scatter-gather pattern

• Saturation: Speedup levels off at 28.53× (relative to Optax+JIT) around 16-32 processes

Four-Factor Decomposition: The total speedup story includes four independent factors:

• Optimizer+JIT effect: 4.13× (593.95s → 143.80s)

• GPU acceleration: 3.60× to 80.5× (depending on qubit count)

• MPI parallelization: 28.53× (143.80s → 5.04s)

• Multi-GPU scaling: 3.98× with 99.4% efficiency

6.3 Relevance to Original Questions

Question 1: VQE Accuracy
Our results show that VQE with a simple ansatz successfully computes the H2 potential energy

surface with high accuracy near equilibrium. The single-parameter double excitation ansatz is
sufficient for this simple molecule, confirming that the variational approach works well. This gives
us confidence that the method can be extended to larger molecules with more complex ansatzes.

Question 2: HPC Parallelization
The parallel implementations demonstrate that VQE is highly amenable to HPC optimization.

We achieved:

• 117× maximum speedup using MPI with 16-32 processes

• Near-linear strong scaling from 2 to 8 processes

15

• Successful implementation of embarrassingly parallel workload distribution

However, our results also reveal important lessons:

• Algorithm choice matters: The choice of optimizer and whether code is pre-compiled has
huge impact (70× improvement just from switching to JIT+Optax)

• GPU overhead: Small quantum circuits don’t benefit from GPU acceleration

• Practical limits: Speedup levels off beyond 16 processes for this problem size

The combination of JIT compilation and MPI parallelization proved most effective, reducing
runtime from 593.95s to 5.04s—a practical speedup that makes parameter sweeps and optimization
studies feasible.

7 Conclusions

This project successfully implemented and benchmarked the Variational Quantum Eigensolver al-
gorithm for computing the hydrogen molecule potential energy surface on HPC infrastructure
featuring 4× NVIDIA H100 GPUs. Key conclusions include:

1. Algorithm Validation: The VQE implementation with a single-parameter double exci-
tation ansatz accurately reproduces the H2 potential energy surface, achieving near-exact
energies at equilibrium bond lengths (∼-1.137 Ha at 0.74 Å).

2. Baseline Performance: The serial implementation on HPC hardware establishes perfor-
mance metrics: 593.95 seconds for 100 bond lengths with 300 VQE iterations each, processing
the embarrassingly parallel workload sequentially.

3. Four-Factor Speedup Analysis: We rigorously decomposed the performance improve-
ments into independent factors:

• Factor 1 - Optimizer+JIT: 4.13× (593.95s → 143.80s) from Optax optimizer and
Catalyst JIT compilation

• Factor 2 - GPU Device: 3.60× at 4 qubits scaling to 80.5× at 26 qubits

• Factor 3 - MPI Parallelization: 28.53× (143.80s → 5.04s) using proper Optax+JIT
baseline

• Factor 4 - Multi-GPU: 3.98× with 99.4% parallel efficiency across 4 H100s

4. GPU Scaling Study (4–26 Qubits): Comprehensive benchmarking revealed GPU advan-
tage at all scales:

• 4 qubits: 10.5× speedup

• 20 qubits: 43.2× speedup

• 26 qubits: 80.5× speedup (1425s CPU → 17.7s GPU)

5. Multi-GPU Performance: The 4× H100 benchmark established:

• Maximum simulatable qubits: 29 (8GB state vector, ∼32GB with adjoint overhead)

• Memory limit: 30 qubits requires ∼64GB, exceeding available memory

16

• Parallel efficiency: 99.4% across 4 GPUs (near-perfect scaling)

• Throughput: ∼1 problem/second at 20 qubits with 4 GPUs

6. MPI Excellence: MPI parallelization achieved 28.53× speedup relative to the proper Op-
tax+JIT baseline through:

• Embarrassingly parallel workload distribution (zero communication overhead)

• Super-linear per-process scaling from cache effects

• Near-saturation at 16-32 processes for 100 bond lengths

7. Practical Impact: The optimized implementation reduces computation time from nearly 10
minutes to 5 seconds, enabling interactive parameter exploration and making VQE practical
for larger molecules with more geometric parameters.

8. Best Practices Identified: For VQE quantum chemistry calculations:

• Use JIT compilation for all implementations

• GPU acceleration beneficial at all qubit counts (10× to 80× speedup)

• Multi-GPU scales near-perfectly for embarrassingly parallel workloads

• Single H100 limit: 29 qubits; larger simulations require distributed state vectors

• Always establish proper baselines to isolate speedup factors

7.1 Broader Impact

This work demonstrates how classical HPC techniques can dramatically accelerate hybrid quantum-
classical algorithms. While we focused on the hydrogen molecule, the parallelization strategies and
lessons learned apply broadly to:

• Larger molecules: Systems with many atoms and different possible shapes

• Multi-dimensional parameter sweeps: Exploring how molecules change shape during
reactions

• Ansatz optimization: Testing different quantum circuit designs in parallel

• Ensemble calculations: Computing averages over many molecular states

• Other variational algorithms: Similar quantum algorithms like QAOA for optimization
problems

Key Lessons for Quantum Algorithm Acceleration:

1. GPU scales with problem size: GPU speedup increases from 10× at 4 qubits to 80× at
26 qubits. For production quantum chemistry, GPU acceleration is essential.

2. Algorithmic improvements first: Optimizer choice and JIT compilation had 4.13× impact—
always optimize your serial code before parallelizing. The optimizer+JIT effect is independent
of and multiplies with parallelization gains.

17

3. Multi-GPU scales near-perfectly: 99.4% parallel efficiency demonstrates that VQE pa-
rameter sweeps are ideal for multi-GPU deployment. No complex communication patterns
needed.

4. Know your memory limits: Single H100 (80GB) maxes at 29 qubits due to adjoint differ-
entiation overhead. Larger simulations require distributed state vector methods.

5. Embarrassingly parallel is ideal: VQE’s structure (where each bond length calculation
is independent) achieves nearly perfect speedup without needing complicated communication
between processors.

As quantum computers improve to 100+ qubits and classical simulation becomes impossible,
these HPC techniques will remain important for:

• Checking that quantum hardware gives correct answers

• Hybrid algorithms that split work between classical and quantum computers

• Error correction methods that require running circuits many times

• Training and tuning variational quantum algorithms

The combination of 117× speedup for molecular simulations and 80× GPU acceleration for
larger qubit counts demonstrates that practical quantum chemistry calculations are achievable
today using classical HPC, while also preparing us for future hybrid quantum-classical computing.

8 Acknowledgements

We thank Dr. Khanal for guidance on parallelization strategies and HPC methodologies in MA453
High Performance Computing. This work was conducted on the ERAU Vega HPC cluster fea-
turing AMD EPYC 9654 processors and NVIDIA GPU accelerators. The quantum simulations
used the PennyLane quantum computing framework with Lightning backend, JAX for automatic
differentiation, and Catalyst for JIT compilation.

9 Codebase

All source code can be accessed at https://github.com/rylanmalarchick/QuantumVQE

References

[1] A. Peruzzo, et al., A variational eigenvalue solver on a photonic quantum processor, Nature
Communications 5, 4213 (2014).

[2] V. Bergholm, et al., PennyLane: Automatic differentiation of hybrid quantum-classical compu-
tations, arXiv:1811.04968 (2018).

[3] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X. Yuan, Quantum computational
chemistry, Reviews of Modern Physics 92, 015003 (2020).

[4] M. Cerezo, et al., Variational quantum algorithms, Nature Reviews Physics 3, 625–644 (2021).

18

[5] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic
Structure Theory, Dover Publications (1996).

[6] G. M. Amdahl, Validity of the single processor approach to achieving large scale computing
capabilities, AFIPS Conference Proceedings 30, 483–485 (1967).

19

